
AO-A093 264 VIRGINIA POLYTECHNIC INST AND STATE UNIV WASHINGTON ETC F/6 9/2

SIMULA (TRADEMARK) FILE CLASSES.(U)
OCT 80 R J ORGASS AFOSR-79-0021

UNCLASSIFIED VPI/SU-TM-80-6 AFOSR-TR80- 1293

minMumNEND



ALFOSR.TRt. 8 0 -1 2 9 3 V )'
""OSR-TR."O-1293' EXTENSION DIVISION

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE P. 0. Box :186
GRADUATE PROGRAM IN NORTHERN VIRGINIA WVashirgton. D C. 2i064,

f703, 471-4600

IILEVEL
SIMULA. File Classes§

Richard J. Orgass

Technical Memorandum No. 80-6 - .

October 8.,1980

F
A bst ract

Two SIMULA class. in file and out file which are designed as replacements
for the system defined classes Infili and Outfile in IBM SIMULA are described.
These replacements provide a number of campabilities that make it easier to
work with a terminal in interactive programs and provide for considerably
improved error recovery.

1. "SIMULA is a registered trademark of the Norwegian Computing Center.

C.), I Research Sponsored by the Air Force Office of Scientific Research. Air Force Systems Command,
under Grant No. AFCSR-79-0021 The United States Government is authorized to reproduce and

J distribute reorints for gcvernmental ourposes notwithstanding any coovrighlt notation hereon.

LAW; The information in this document is subject to change without notice The author, Virginia

Polytechnic Institute and State University. the Commonwealth of Virginia ano the United States
Government assume no responsibility for errors that may be present in this document.

A.,t. , r , 1bt a!e

qW.-I . A W Z .n



2

0 1980 by Richard J. Orgass

General permission to republish, but not for profit, all or part of this report is
granted, provided that the copyright notice is given and that reference is made
to the publication (Technical Memorandum No. 80-6. Department of Computer
Science. Graduate Program in Northern Virginia. Virginia Polytechnic Institute
and State University), to its date of issue and to the fact that reprinting
privileges were granted by the author.

1;



SECURITY~ CL A'IFICATION OF THIS

b D-I lDT wIICUMETATIOd PAGE R1A^) INSTRUCTIONSMIHUPFORE COMIPU'TNG FORM
REPF ER 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

0S 0 - 12 93! L-3
4. TILT (.d S.btitIe) S TYPE OF REPORT & PERIOD COVERED

FILE CLASSES,

~ *K~ i.J/'VF~ LL A' 6PERFORMING 01G. REPORT NUM ~
-. AUTHOR(s 8 CONTRACT OR GRANT NUMBER(s)

j ~ J.Orgas . 1 AFOSR-79-AR,21

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK
AREA & WORK UNIT NUMBERS

Dept. of Computer Science
Virginia Polytechnic Institute and 611 Q0,3.4(A5 i/,.'
State University ,.

I. CONTROLLING OFFICE NAME AND ADDRESS I: T TE

Air Force Office of Scientific Research/NM iJA80ctoww880 ,
Boiling AFB, Washington, D. C. 20332 -14- NUMBER'OIF PAGE"-

49
14. MONITORING AGENCY NAME 6 AOOD ESS(f diffo nt from Controllifig Ofice) 15. SECURITY CLASS. (of (his report)

UNCLASSIFIED

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thi, Report)

Approved for public release, distribution unlimited.

I7. DISTRIBUTION ST ATEMEN T (of the abstract entered in Block 20, If di fferent fromn R. I) EVE

N TISq GRA&I---.

I. SUPPLEMENTARY NOTES

Distributol:3
,

Aval1ability Codes ..

19. KEY WORDS (Continue on reverse .sid. if necessary and identify by block mnuher) Dis I a sp ) jl,

20 BSTRACT (Continue on reverse side If necesary and Identify b% block nmber).

Two SIMULA Cla ;s in file and out file which are designed as replacements

for the system defined classes infile and Ouifile in IBM SIMULA are deecrihed.

These reprlacements provide a number of campabilities that make it easier to
work with a terminal in interactive programs and provide for considerably

improved error recovery. q/44

DD A"R 14713 EDITION OF , NOV 65 IS OBSOLETE 1N TH
E C UIR IT Y C L A SSIF IC A T IO N O F T H IS P A G E ( '14140n o,*l . e ll '"

.'Y l - . .... . - .. . . • -



j SIMULA File Classes

The system defined file classes provided with IBM SimuLA are designed for a batch
j environment and there are many obstacles to using these file classes to create interactive

programs in the VM/CMS environment. For example, it is necessary to use DD names when 1
creating an instance of a file class and this requires issuing filedef commands before
program execution begins. When a terminal user responds to a prompt by simply entering
(CR>, this response is interpreted as an end-of-file and any further attempt to read from theA
terminal causes an error termination. The error recovery provided by the system defined file
classes is quite simple and direct: execution is terminated. In an interactive environment one
expects to provide reasonable opportunities for a user to recover from minor errors.

In an interactive environment it is often very useful to be able to create log files which
contain all of the user's input and to be able to read such files in place of terminal input so
as to recover from either human errors or other misadventures. When such log files are
being read to recreate the state of a program, it is desirable to recreate the terminal
transcript for the user so that the user is aware of the state of the program when he is finally
in a position to continue work from the poi~t where he was interrupted.

This report describes two SIMULA classes, in -file and out -file which provide for dynamic
file naming, error recovery, log file creation and application as well as character translation
for use with APL terminals.

The file classes described here have all uf the attributes of the system defined file
classes as well as additional attributes that are described here. It is assumed that the reader
is familiar with the system defined file classes and no further documentation of the attributes
of these classes is provided.

These file classes provide error recovery for both user errors and for program errors.
There are a number of coding errors that may be corrected during program execution
without changing the source text and this kind of error recovery requires some justification.
The civs SIMULA environment is basically the result of grafting a batch processing run time
environment into cms. As a result. the only error action taken by the system is to terminate
execution and (optionally) print either a symbolic or hex dump. As a result, a trivial coding
error can require another compilation of the source program only to detect another error.
The coding error recovery was provided to improve the efficiency of program debugging. if
a symbolic debugger were available, many of these corrections would be inappropriate
because they could be dealt with by the debugger. Thus. this error correction should be
viewed as a (hopefully) temporary program development tool for use until a symbolic
debugger is available.

Section 1 describes the use of class in file and Section 2 describes the use of class
onuthfie by means of examples. Section 3 provides instructions for using these file classes

onteVirginia Tech vm/cms system. A listing of the source text of these the code that is
added to a user program appears as an appendix.

The following conventions are used in this report. When a sketch of program text
appears. this text is printed in Algol publication format. i.e., boldface keywords, italic
identifiers and italic Edit Case for system defined identifiers. The read ier should assume that
this is an example that was constructed to explain a particular concept rather than an

excerpt from a specific program. When an extract of an actual program occurs in the



2 SIMULA File Classes

document, it is printed in a f i xed pitch font with upper case keywords, Edit Case system
defined identifiers and lower case user defined identifiers. System commands and input text
to be typed by a user also appear in a fixed pitch font.

1. Input Files.

Just as for the system defined class Infile, the first step in reading a file is to create an
instance of a file object. This might be done as follows:

ref (in file) input;

input:. new infi/e(<file spec>); L
In this code fragment, <file spec> is a CMS file id or the string tty: in any mixture of upper
and lower case letters. If a portion of the file id is missing, it is provided in accord with the
defaults described below. When this statement is executed, the value of input is a closed file
object whose input will be received from the device specified by <file spec>.

If the actual parameter of in file is the text object TTY:, then input is read from the
terminal. Note that the text objects tty:. tTy: and so forth are equivalent in this context.
If the actual parameter is a text object other than one of these strings, then the actual
parameter is interpreted as a (partially specified) CMS file id.

Recall that a file id is a string of the form <fn>[ <ft>[ <fr>]]. If the <ft> is omitted. the
ft> DATA will be used. If <fm> is omitted. all accessable disks will be searched in accord

with the search list specified by the profile. The first file in this search that matches <fn> <ft)
will be selected. If there is no such file, a message will be printed on the terminal and the
user will be asked to specify another file id. By replying to this request for a new file id with
the string CMS:. the user may enter CMs subset to examine his directory to select an input
file. To return to the running program. the user enters the string RETURN (in any mixture of
upper and lower case letters).

A program segment to read a file id from the terminal and then create an in-file might
be the following:

REF(in file) input:
TEXT file id.

Outtext("Fileid. "):
Breakout imace:
In image:
file_ id :- Copy(Image.Strip):
input :- NEW in file(file_id):

and the terminal transcript would look like this (assuming that the file MUMBLE FOO does not
exist):

Fileid: mumble foo
? File MUMBLE FOO does not exist.
Enter file id: /CMS:/

At this point, the user could enter CMS subset and look around to select the appropriate file.
When this is completed. the user enters RETURN and the dialog continues as follows



SIMULA File Classes 3

(assuming that the actual input file is ALPHA SIMULA):

# return
[Returning to SIMULA program execution.]
Enter file id: /CMS:/: alpha simula

After this, the value of input is a closed input file object connected to file ALPHA SIMULA.
Observe that the prompt character is # when CMS subset is being used.

Instances of class in file are opened in the same way that instances of the system
defined class Infile are opened, i.e., to open the in file object input, the statement

input. Open(Blanks(80))

is executed. There is, however much more run time error recovery when the Open attrtibute
of in file is used. The following error recovery is provided:

(1) If the file object associated with input is already open, then an error
message is printed on the terminal and the user is given the option of
continuing execution or terminating execution. The text of the message
is:

? infile.Open: File ALPHA SIMULA is already open.
Do you want to continue reading the file? /y/:

If the user responds with a carriage return, execution continues as if the
file were closed when open was called. However, if records have already
been read from the file, reading continues from the next record: the file is
not rewound.

(2) If the record length of the file is greater than the length of the actual
parameter to the file object. the user is given the option of extending the
Image attribute of the file object or terminating execution. For example. if
the above call on Open were executed and if the record length of file
ALPHA SIMULA is 132, the following terminal transcript would occur:

? infi le.Open: File ALPHA SIMULA has a record length greater
than the length of the provided buffer.
Do you want to extend the buffer? /y/:

If the user answers yes by entering a return, then input.Image is extended
to Blanks(132) and if the user answers no, then execution is terminated.

Class infile has the usual attributes Setpos. Pos. More. Length, Close, intmage.
Lastitem. Intext. Inint. Inlrac. Inreal and Incriar of the system defined class Infile but these
attributes of the class provide for error recovery. In the system defined class, it is a run time
error to call one of these procedures when the file associated with the object is closed.
When class in file is used. an attempt to read from a closed file results in an error message
and the user may decide to open the file or terminate execution. For example, if input lnint
were called while file ALPHA SIMULA is closed, the following dialog would occur:

% in file.Inlnt: File ALPHA SIMULA is closed.
Do you want to open this file? /y/:

- M14



4 SIMULA File Classes

It the user answers with a return or yes, then the file is opened and the first record is read to
satisfy the call to Inint and if the user answers no then execution is terminated after an
optional symbolic dump.

The attribute Close of in file behaves in the same way as the system defined attribute of
Infile except that a call to Close will not cause a termination of execution if the file V
associated with the object is already closed. Instead, the following advisory messages are
printed on the terminal:

x in tile.Close: File ALPHA SIMULA is already closed.]
(Execution continues.]

The attribute Endfile of class in file behave in exactly the same way as the
corresponding attribute of the system defined class Infile.

Instances of class in file have additional attributes that are not possesed by instances of
the system defined class Infife. Each of these attributes is described below. The attributes
are described by exhibiting the declaration of the attribute followed by a description of the
attribute.

boolean procedure Opened

This procedure returns the value true when the file associated with the instance of
class in file is open and false otherwise. This attribute duplicates an attribute of the file
classes in DEC-10 SIMULA. It is sometimes convenient to use this attribute when one wishes
to take a different course of action depending on the state of the file.

text procedure file_spec

The return value of this procedure is a text object whose value is the CMS file id of the
file associated with the instance of class in file. The text object is in the same format as the
output of the CMS command LIST. That is. the file name and file type each occupy eight
spaces (possibly padded with blanks on the right) and the file mode occupies two spaces.
There is a single space between the file name (padded to eight spaces) and the file type and
another space between the file type (padded to eight spaces) and the file mode.

boolean echo

This attribute of an in t.'e is meaningful only if the file associated with the instance of
the class is a disk file. When the file is a disk file, the value of echo controls the behavior of
the file object as follows: (1) If ec,'c has the value true. then characters read from the file
are copied onto the terminal as they are being read from the disk. (2) If echo has the value
false then this echoing is not performed.

This attribute of class in fle was included to make it possible to read files which contain
user input that was typed during a previous execution of the program and then reproduce
the terminal transcript in the continuation session. The echo attribute combined with the tog
attribute described below makes it very easy to write code to function in this way. See the
example below.

ref( .,_t file) log

If the value of this attribut of an in fie is set to none. then the class instance behaves
lust as one would expect However. the following occurs if log is different from none:



SIMULA File Classes 5

Each line of input from the input file (or terminal) is written to the file associated with the
value of log. Note that only the input received from the device is written to this file;
program output is not recorded.

boolean divert

The value of this attribute controls the action of class in file when an end-of-file is
encountered in a disk file. If the value of divert is false, then the instance of class in file
behaves as usual upon reaching the end of file. On the other hand, if divert is true, then
and end-of.file from the disk is used to transfer the source of input from the disk file to the
terminal. For example, suppose that a program is reading file ALPHA SIULA and that the end.
of-file is encountered while divert is true. The terminal transcript would look like this:

[% in file.Inimage: Input from file ALPHA SIMULA diverted to
TTY: .1

After this, additional reads from the file (including the read which initiated the end-of.file) are
satisfied by reads from the terminal. This attribute is particularly useful when reading log
files generated with the help of the log attribute described above.

Example

The following code fragment illustrates the use of class in file to create an input file
which uses the echoing and logging facilities described above.

ref(in file) input:
ref(out-file) log file;

Outtext("Input file: ).
Breakoutimage;
input:- new infile(Image.strip):
Outteyt("Log file: "):

Breakoutimage;
Inimage:
log file :- new out-file(image.Strip);

input.ecio: true:
input.divert: true:
input. log log_file;

In the first sequence of executable statements. an in file and an out fite are created using
files specified by the user from the terminal. In the second group of executable statements.
the echo. divert and log attributes of input are initialized. The files must. of course. be
opened befor reading and writing begins.

When this program is executed. the user is first asked to specify the input file from
which data is to be read. If there is no existing log file, then the appropriate response would
be the string tty: to cause all input to be read directly from the terminal. The file id that is
the response to the prompt Log f i1e: becomes the file id of a file that contains all input
that was entered from the terminal in response to calls to input.lnimage. At some point in
program execution. it might be desirable to suspend execution of the program. This can be
accomplished by entering control-C (tC) in response to a request for input. Suppose that
the log file that was created during this execution was file ALPHAI LOG.



6 SIMULA File Classes

The next time the program is executed, the user could answer ALPHA 1 LOG to the
prompt Input file:. The response to the prompt for a log file might be ALPHA2 LOG.
During this execution of the program, all of the responses from the first execution will be
read from file ALPHA1 LOG and both these responses and program output would be printed on V
the terminal. When the end of file ALPHA1 LOG is encountered, a message will be written on
the terminal and additional inputs will be read from the terminal. At the end of this program
execution, file ALPHA2 LOG will contain all of the user responses from the first and second
execution of the program. This file could then be used to bring the program back to its state
at t..e end of the second execution. After this, execution could continue as though the
entire computation had been done in one session.

Using log files provides a certain amount of security agains accidential loss of important
results and provides a rather limited replacement for a checkpoint facility (which is not
available in cMs).

Useful Details

The usual CMS convention is that an empty line from the terminal is an end-of-file for the
terminal. This convention proves to be quite inconveneint in an interactive environmnet.
When using class in file. the following conventions apply:

(1) An empty line, i.e., responding to a request for input by simply hitting the
return key, is read as an empty line consisting of lmage.Length blanks.

(2) A line consisting of control-Z (tZ) followed by return is read as an end-of-
file from the terminal.

(3) A line consisting of control-C (tC) followed by return is read as a request
to terminate execution. Execution is terminated and all open files are
closed.

Note that in (2) and (3) the input line must consist of the control character immediately
followed by return. A control character followed by a blank and then a return will NOT be
interpreted in this way -- it will be transmitted to the program.

This set of typing conventions was implemented to provide a more reasonable terminal
interface for cMS SIMULA. It is still not a satisfactory solution to the problem of providing a
comfortable interactive environment but it is substantially more convenient than the version
provided by the system.

2. Output Files.
Just as for the system defined class Outfile. the first step in writing a file is to create an

instance of a file object. This might be done as follows:

ref(outfile) output:

output :- new outfile(<file spec>):

Just as for an input file object, in this code fragment (file spec> is a CMS file id or the string
tty: in any mixture of upper and lower case letters. If a portion of the file id is missing, it is
provided in accord with the defaults described below. When this statement is executed. the

- " = - I I i I.I II I I



SIMULA File Classes 7

value of output is a closed file object whose output will be directed to the device specified
by (file spec>. [An obscure detail possibly of interest to hackers: A filedef for the output file
is not executed during the creation of an out-file because the record length of the file is
unknown until the call to Open which must occur before data transmission.]

If the actual parameter of out file is the text object TTY:, then output is written to the
terminal. Note that the text objects tty:, tTy: and so forth are equivalent in this context.
If the actual parameter is a text object other than one of theses strings, then the actual
parameter is interpreted as a (partially specified) cms file id.

Recall that a file id is a string of the form <fn>[ <ft)[ <fm>]]. If the <ft) is omitted, the
<ft) LOG will be used. If <fin> is omitted, then the mode will be determined by examining all
accessable disks in the search list specified by the profile. The file mode will be the mode of
the first disk in this sequence with the property that the user has write access to the file. In
most applications, this will be the A(191) disk. If the user does not have write access to any
disk. a non-recoverable error will occur at the first attempt to transfer data to the file.

A program segment to read a filed id from the terminal and then create an out-file might
be the following:

REF(out file) output:
TEXT file id:

Outtext("Output file: "):
Breakoutimage:
file_ i :- Copy(Sysin.Image.Strip):
output :- NEW outfile(file_id):

and the terminal transcript would look like this:

Output file: fumble foo

After this. the value of output is a closed file object that will write output to disk file
FUMBLE FOO. The next step is to open the file with the procedure call:

output.Open(Blanks(132))

Executing this call will open the file named in the creation of output (FUMBLE FOO in this
case) to be written as a fixed length record file with a record length of 132 characters. As in
the system defined class Outfile, the length of the parameter of Open determines the record
length of the file to be written.

The system defined class Outfile will terminate execution if the file is open when a call
to Open is executed. The Open attribute of an outfile will give the user the option of
continuing execution in this case. The terminal transcript lookis like this:

? outfile.Open: File FUMBLE FOG is already open.
Do you want to continue writing the file? /y/:

If the user selects the answer "yes" by hitting the return key, then data transmission to the
file continues. On the other hand, if the user responds with the character n (in upper or
lower case), execution will be terminated. If the user elects to continue program execution.
additional outputs written to the file will be appended to the data already written to the file.



8 SIMULA File Classes

Class outfile has the usual attributes Setpos, Pos, More, Length, Outchar. Outint.
Outrac, Outrea/, Outfix and Outimage of class Outfile. However, there is provision for error
recovery if there is an attempt to execute one of these procedures when the file is closed.
Here is an example of the terminal dialog:

% out_file.Setpos: File FUMBLE FO0 is closed.
Do you want to open this file? lyl:

If th.: user answers this query affirmatively, then the program will request the record length

of the output file as follows:

Enter length of output lines: /80/:

The response to this prompt may be any positive integer less than 256 (a VM imposed
limitation). The file associated with the file object will be opened to write with the specified
record length. Note that this will cause the destruction of data that is already in the file!

The attribute Outtext of class out file performs in the same way as the system defined
version but it has two error correcting capabilities. As for all of the other attributres of the
class, it is possible to recover from an attempt to write on a closed file. The second
extension provides for recovery from a fairly common error. In the system defined versicn. If
Outtext is called to write a text object consisting of, say, 25 characters and there is only
space for 24 characters in Image. then an error termination will occur. In the version
described here. the first 24 characters of the argument to Outtext will be added to Image
and then a call to Outimage is executed. After this call. the remaining character in the
parameter of Outtext is placed into Image. More generally, a text object of any length can
be transmitted to an output file with a single call to Outtext. The text object will be written to
the file using as many lines as are needed to contain the text value. If less than a full line of
characters remain after lines are written, these characters remain in Image and Image.Pos
has the appropriate value.

The attribute Close of class ot fiie provides for error recovery if the procedure is called
when the file is already closed, Here is an example of the message that i3 printed on the
terminal when this occurs:

[/ out file.Close: File FUMBLE FOO is already closed.]
[Execution continues.]

Class out file has a number of additional attributes that provide for printing prompts and
reading a response on the same line, for echoing output to a disk file onto the terminal and
for performing translation so that output can be written to APL terminals while preserving the
characters in the text. These attributes are described by exhibiting the declaration of the
attribute followed by a description of the attribute.

procedure Breakoutimage

When the procedure Outimage is called to write a record to a disk file. the value of the
Image attribute (including trailing blanks) is written to the file. In contrast, when Outimage is
called to write a record to the terminal, the value of Image.Strip followed by <CRX>LF) is
written to the terminal. This means that the next piece of input or output will appear on the
next line. In many interactive applications, it is convenient to be able to transmit characters
to the terminal without a trailing <CR><LF>. In DEC.10 SIMULA. the attribute Breakcutimage cf
class Outfile provides this capability. The corresponding attribute of class out file has the
same property for ISM SIMULA.



SIMULA File Classes 9

The Breakoutimage attribute of an out file may be described as follows: If the instance
of out file is associated with the terminal, then image.Sub(1,lmage.Pos) is written to the
terminal without a trailing <CR><LF>. If the instance of out file is associated with a disk file,
then Breakoutimage is equivalent to Outimage.

Some examples might illustrate an application of Breakoutimage. Suppose the program
fragment:

Outtext("Enter your name: "):
Outimage;
Inimage

is executed. The terminal transcript might look like this:

Enter your name:
Bill Jones

Notice that the prompt and response are on different lines. On the other hand, if the
program fragment:

Outtext("Enter your name: ):
Breakout image:
Inimage

were executed. the terminal transcript would look like this:

Enter your name: Bill Jones

boolean procedure Opened

This procedure returns the value true if the file associated with the file object is open
and false otherwise. This attribute of class out file corresponds to the attribute of class
Outihe in DEC-10 SIMULA with the same name. This attribute makes it easier to write
programs that take different courses of action depending on the state of a particular file

text procedure filespec

The return value of this procedure is a text object whose value is the cMS file id of the
file associated with the instance of class out file. The text object is in the same format as
the output of the CMS command list. That is. the file name and file type each occupy eight
spaces (possibly padded with blanks on the right) and the file mode occupies two spaces.
There is a single space between the file name (padded to eight spaces) and the file type and
another space between the file type (padded to eight spaces) and the file mode

boolean echo

The attribute echo is only meaningful if the instance of class out file is associated with a
disk file. In this case. if echo has the value true, then all lines written to the file are also
written to the terminal. If echo is false, then this echoing to the terminal is not performed.
If the instance of outfile is associated with the terminal, the value of echo is ignored.

APL Character Set Support

ASCIt/APL terminals have the property that they can display characters in either the ASCII

4.



10 SIMULA File Classes

or APL character sets. Most modern ASCII/APL terminals also have the property that the
character set can be changed under the control of the host computer to which the terminal
is conneced. This second character set on a terminal provides a number of exciting
possibilities for the use of terminals but it also imposes some additional work on the
programmer.

For example, if a program writes an ASCII string to the terminal when the terminal is in
the AFL character set, it is quite likely that the text printed on the terminal will be
unit -31figible to the user. A similar situation arises if a string of characters in the APL

character set is sent to the terminal when the terminal is in the ASCII character set. Thus, it
is the responsibility of the programmer to keep track of the character set state of the
terminal and to take appropriate action.

The use of ASCII/APL terminals is further complicated by the fact that there are two
generally accepted mappings of APL characters onto ASCII characters. This unfortunate state
of affairs is a result of posponing a decision concerning a standard for this mapping until
terminal manufactures were committed to both character mappings. The two mappings of
APL characters onto ASCII characters are called key-paired and bit-paired.

Class out file has six procedure attributes that make it easier to work with ASCII/APL

terminals. These include procedures to change between the three character sets (Ascii. key-
paired APL and bit-paired AFL) and to determine the state of the terminal character set. In
addition, there are procedures to write ov'put while bypassing the character set control and
translation mechanisms.

By definition, character set 0 is the ASCiI character set. character set 1 is key-paired APL

and character set 2 is bit-paired APL

integer procedure terrr,ye

The return value of this procedure is the character set number of the current terminal
character set. When the return value of termtype is 0. text written to the terminal or a disk
file is transmitted without translation.

When the return value of term type is 1 then all output transmitted to the terminal or
disk file by way of calls to Outimage or Breakoutimage is translated to preserve the
appearance of the text object when it is printed on a key-paired ASCII/APL terminal. This
translation converts lower case letters into the (upper case) APL letter and converts upper
case letters into underscored APL letters. The graphics are translated subject to preserving
the appearance or function of the character.

When the return value of te'm_type is 2 then all output transmitted to the terminal or
d sK file by way of calls to Outimage or Breakoutimage is translated to preserve the
appearance of the text object when it is printed on a bit-paired ASCII/APL terminal. The
translation is as described above.

When an instance of out file is created, the defalut terminal character set is 0 and this

will be the return value of term_type.

procedure set ascii

When this procedure is called. the character set associated with the file is changed to

Asci. If the character set was different from ASCI' and if there were characters in lmage.



SIMULA File Classes 11

then these characters are emitted in the previous character set. Characters to change the

character set of the terminal are sent to the terminal or file.

procedure set_keypaired

When this procedure is called, the character set associated with the file is changed to
key-paired APL. The same character set change and buffer emptying described above is
performed,

procedure set bitpaired

When this procedure is called, the character set associated with the file is changed to
bit-paired APL. The character set change characters and buffer emptying procedure is
similar to the procedure described for set ascii.

procedure ap/_outimage

This procedure is the same as Outimage except that character translation as described
above is not performed independent of the state of the terminal, disk file and character set.

procedure api_breakoutimage

This procedure is the same as Breakoutimage except that character translation as
described above is not performed independent of the state of the terminal, disk file and
character set.

3. Directions for Using these File Classes

The file classes described here are implemented as declared classes which also make
calls on procedures that are contained in LIBSIM. This section provides directions for
incorporating these file classes into programs and a sketch of their implementation.

The files that support the file classes described here are stored on the 191 disk of cMs
userid CSDULLES. If you are going to use these file classes, it's a good idea to add the
following three lines to your PROFILE EXEC:

cp link csdulles 191 330 rr all
access 330 b/a
global txtlib libsim simlib

In any case. these three commands must be executed before you attempt to compile or
execute a program that uses these file classes.

A program that uses these file classes must be compiled using the SiM exec that is
provided on CSOULLES. Suppose that a program that uses these file classes is in file ALPHA
SIMULA. This program would be compiled, loaded and executed by entering the cMs
command:

sim alpha

When a program is compiled in this way. the usual default value of the compiler parameters



12 SIMULA File Classes

are used. The output from the compiler (a text file) is loaded and then a module file is
written to the disk. After the module is written, execution of the program begins. [it takes
the loader a terribly long time to load SMULA programs and it is possible to save a great deal
of time by creating module files.]. When this exec is invoked to compile a program, it will
delete an existing module file with the same name.

It is necessary to make a few minor changes in a source program that uses these file
classes. Suppose that the text of an ordinary SIMULA program consists of begin ... end.
This program would be modified as follows:

%COPY PREFIX
BEGIN

ENO;
%COPY POSTFIX

The effect of this is to incorporate the declarations of the classes in file and out file into the
program. In addition. Sysin is declared and opened as an in file and Sysout is declared and
opened as an out-file. Observe that the end that terminates the program must be follwed by
a sem-colon.

If you are interested in exploring the details of the code introduced into your program by
this change. you might want to consult the listings of files PREFIX SIMULA and POSTFIX SIMULA

which appear in the appendix. These files are added to your program by the two %copY
commands to the compiler.

I



SIMULA File Classes 13

Appendix I

Listing of Source Code

The source code contained in files PREFIX SIMULA and PoSTFIX SIMULA is
shown on the following pages. This is a reproduction of the actual files
as printed on a Diablo terminal using the utility program TTYsPL. K

Ii



CC

C)I-

04 1
dc w I

ICC

a,.3

z z

04 k% i



0

44

b4

40
C

O..

0~ 0
Cb AAU

o4l



W,

10 A

4) 4)c154

to-1w ) 4) C

I -4 )4 0Uj= 4
4)4)a .0 w4A O )cm4 4) C

44) . r 1044 44 1

m j .- 4) -' 10-4) -w6.j

444)£0 414 old) a )a; CJ.4 ftC w 0 l
C 41 V 4ON)4W dih 4)6) 394 F-. 4-4mCI 0 4X

4) to C£ CU W.E )
to444 0 a0 L. 'J 114j

0-144 * 4) ) ~ 40 4 4)414
to)1V4 4) 4) )44 4 0 A )1

~-0 0 4) -4 -1 4) C £ 0

Aj 4 -0 U) %4) % 14 F-b ~ U4) w

4)4 4) 4) 4) 4) ai o)0 0 #0
Aj44 C)40 b4) 00..0 V44) V

c 04) 4))U 0 O w 4) 4) 04 4) 4)
A-4) 2 04) -1' 14 4 41" Lc .- C- *Ch .41)jC

3k J, -4 %a4 u - V U *4 44 to tU

V w4w 40 U it v 10 4) v 4 1 ) SM14 4))4004 4

a; 10k . C i Ai U j :0 w44) 10 9) 4
-4 9) 19 4) a ) 4) 4) M.- 14 4))c000 ) w ))

4)- 9)) 0) 4 4) 0 '"14 A MO >.A 0 O A ). -0 V-
V24 -, -4 -C 04 IC 0) =.) 4£C

0)~ 1 lb) 10 go 14. 4) 106C- 4))C-
4 Di.0 164 4uS 16 4) 6, 4)4) b4
.4) 2C c 0S V )C)S 0

go 4 P-4 4464 0 o o - ~ ~ 4 -
-4 44444 ) 0 0 4 10 40- V to)

4) IV 4) M CC 0 U 0 w4 )4) %a 4) 4)
mw 4U4 a b3 C- 0 c CC c 04 ij))V) 4)

I 4C)0 0 .c w a b wU C)- P- *n z .1g
C ) ~ C 1 AO ..j w0 4) 0 6 0.)~4 )

04 4) >)4 4) A ( 4)4)4 0 J4 - )

UV-) 4) PC v A 9) 4 .4 I4 D I 1-4) W4) .l4 > 1

-. 4 4 w I AC C "



4,.4

"44

-C 140'1 j I U

w.a M. C 'A
z' , vv %4~~ 6 a zdcd

z 00
okN

'Ir



44

0'.

3. D.

0

- ~ Ic
- el a

W I 41 C

41 C C 4141i

-3 c.-0 0 -
- Z. 41 k. -u -

41~ 41n 41 0- C b

o -s 0 ob2-

1.~o 41 1- 0I 4
id 0 U iU 41 - 4

Qe 03 .43 WO4 ~ 4
01. 2CJ4 -0. 4 O&V 4.

Ow >44 4 0014.. 41
41~ 41441 -

ow f_ ~ ~ 2 ~ -

o4 6 ' C 1
am 4 1 041 ~ C 1 4



10 0C
.2 cC

A. ( w0 ,0

co a I

to.
W 40 V

Ea 01.4

a 4 .1N A 1 .

tn 64iti V4 A. 00i

40uatr A

z x

t-ci 4 ca2 62 03



a0

0W

Ai .

a, - -0 .

0 4

0%W

4)Ai. 4

'0x

Aw 4 ) 4jA .1

w j 4 0 c 4) 4) 41
41 %W .00 - A

w - "0
C4N2 4)4

4.. c1z m '

0%( ta. E'.%Q 4) 4

4)>v C4) '4 a
E. 04f 4 2-a E 4

1' 0 4 014 m4U

C0 m ) 0 v) ~'
Z00- m - . ~ C - 4

-43 0 C- -

IZ *J *E-C -- :

0 e0 E'40~

ow . 4  4-0 004 ai I2- U .. C0C~ -. j1 0



Lni

d3

'4)

417

414

41-

0
'0 c

o10 34 4E

U 41u

4) A
00 4J w . , .AjAj

*- 0 ~ 4

-- 4)wV-
u4 Q=41m

0 ~ 0 f
06 00 41 r

-41 E.



a%00
00

c'3 r

cU W a
om 04Q

0 2
Z E

CA U24

ACE a4

tr'

4C4

v4)
a 9

do -0

wE u(z C

9. 96 4) o



C11

i

4d2

14.4

r cr
E-4jA

>, .9 -G 4

-q w

I4 In

2 z 440 ws 0- E -

11 41

W4 -4 44 0 zca

mf Zp 04 0

a) -j - -

mN 0. C' *- Mj 04.

E E- W. Z 0W II E-
0.n w ta 0. U2 4

a.I r Ew I- E-~ 04202
a. 04 0 - N .- i'~f 0

M - i.Z 4

fl *. D3* f''~

too 0004-C- 40
4w. 2 00i~2ff~ -

C.- iUf-4W~f 00
w 4.. 4! in-~- -4-. I 0



0

0°

0ZO

-:.

41,



0

00

oo

029

oNo

ul 'i M =
m a E.

41 02

0' m

IE 3

m W Z

z 40
A J2..- z

05'- U320
. ~ z 0

4.0 ow~
U3022



-C

C

4)

0 a

0

0.4 41

-4

c I

C5V
+ 0.4w

0 )p t ON N Aj - a,

t". 10V 4
4,. c aal-

630 4) "4T

fa u 0.

02 to I pn o00 U

Aj2M -. .0. A 1 3ulc
Ai x x a aw ca M c c XE

0 Sal "~ ;4

0. " - 0' '- (- 0 Iccb
a a4, >. 2>...

w, c 0. 24 w ca24 -.

0' 1140 '- - 0 0'~2
0 2 06w tn0 0 4 U.2-

1 0 .11I 1 a4,*0
04 9k 0206 C .' 4,,S I 40

Z 20 .. ' . '' M .C '' C 0
Aw 022 ' IF. 22 2 4

093 4,.01 0 220 C ,x00.
x I 0.1 4 0' , M ~ 00



a)
Cm,

CP

to 0 f- O

41

a'.- I t

N 9
* 0 '

43~ im
O'Ifl .
* w

U).



* ... ~- - LM

0
40

0 .0

(A4y
03 ou t

is 0 ofi

-43

0 z

00 04A4
0 i 0 0 ) 9 4 i

I %W

'.-4 to a 4) MA

a.) Ai =4 m .C

i in 06. 0 
x 06 x i 0 U

,a 4; wa "'. . q4)

-. * .4 .4 Z. 0.

C4) c 64.- 04
z0 63 b30



C

00%

I- A

m 4) 00
3t

PC C)

4 Z

0.)4 34) 4) 34)i z

-CC - 0

094 Ilk - *1
44)4 m40 44 44



9w L
0

4 4

. 0

%W0

04

10C

0C4
u 44 41 rJ

U3 r
4) - & & E. E

X & 0 1 D. >.

m 44..A J * 
-4 f 2 4 ~ .3 b0=0 ao lz E.-C cIC

00

'9 a-a- x Ew E - E
3 I a DO ~ WA z x2

U a ~ 444t



do
co
'C4

11%4

N0

C6

m0 t

x ~ (- tr0

3 , 0 -1 , C

41 1.

> Ai
0 -a -4 w V

0

41 V. V 1 E

0 i 04 0 0-U b =
4 to *.- to 0 0-

m1 U W .- 4c1L0 4

0. z a aa o 0 4 0C60
01 C 4.. W o W A 0 1 D
.- 41 & k% 1k 9 N

L) 0 " 0 c 1 6
4a q444 U w W a no

u-4 W oCo0 0 1.- 0.

N j 00 E- v go ^ A . A
0z 000 lz 0m n u u u

o 00 0 a;m % 0 z 4)w %

0 IM00. z 0-0 z0.0
00000 % ~E.

z III m z z
41 * 41C



in

dC

41

-C

90 MC
4,

c
0

a)



0

~-1

'CC

a,.

2 n . 0 w

0, 1

0) 4 ,

#a w I W- no

0 .C C -s
4,V 4, -

. >, a0.d

u-O .1. gC Z-

0- -
44. la x

96 A.d

OSMW



d0

10

a,

Uy.Z t
40

414
a'!

0 - 4

me z
00

> .. '

2 . .Z -o r
dc- 63 z I -

INa



Uy,

C

r 61

ar
tr.t

fe W - fa
c , z ra 1 3 a, 4

U Z 3k Z I'-0

1. o c 42 0 0.6 CO'C
2c ty 2 41 41

41 z . ' . A - 0 "A o A LZz0
41 C z2 kZZ A* 0 C )xl

0 2 41 01 409 44aIZ 0 G %0V b rq :006
- 0''-1 Aja, I - ' ..

u 41 wg 163 ' N Q.a 3 4m 2 *1 . Jul ' 3. CLV0 . W 10 ' Q.
-~, 3 4 - -. at)4 - 34

-1 ! 10,* C- .C 14 t .2 , -1,soC 41 41 , .0w Uz n 3 3w z 6- 3-3 AJ-0 1 - I

o ~ 9 go00 A. w10 + ~ , 0 W 1 o



C4

04

'C1

0a

03m (
&; .

w4 jaM wA

X )0,4

0. . Iz o

4W 4 CI

14 a 8 G

36 NAOA m- no



Cl

ojA

a4'

Al AA A o f 1TZ I =i 2 zC

00 co w u n 0 mto 0 ca n

6 -I- w D; E. - 4) Do 6E .a

m) 0)C

.01.

uz xU wn zU a: w.J z
C6 CO. C6

cm ~ n un* .ca r 0 .r r



0j

a%



o(

E c

-i 4

rm z 4.4-4 6 z Q

.1 U C
09 Z

4) m- w- a40w

to 0 * '0 (nmC, am
E- .- > E C 00

4- E. c £ E n

03 -u 0 0 Iu 03

u 1* 10 1 U*. 00 J*

4) z4z Do~ " *. I
m 03 0 w W~ 0

a EZ Da41 0,x -~ w00E. b a
- .I" E- 0 0 0%

0j 43 o mu m -*
z kzU '0 a 0 1

- j Ai to.o oj I- 130
0 - >,w ! 0*' 'U 03

41 a ZO 044111

w U -1 41 U31 01 -

14 0 N.7

0. O.0 I=3 6w



0

cc

0 r

a'a

cr 4

.4 m

a

01 
c

fa CC3 n 4

03

* elm

-- 0
4)4) IC
0'-) 40



CLC

'00

t101

00%

E0.. 4X> A

>% 0
04 0

0 .- 0 z

r 0 E- 0%

a ' b 0 w Z ALco u go 09

-o M
In 0 ..~. 00.. -

Ac 00 3 0 IE D 00 ;a oE 0 t -MW0

z . *- ca * *0 aZ Z 0' g
-. ~E 1- 0.1 MRs 1 00- . ~ 1

0 'l 0mu w1 aC.. 1 1

-~~ u I U0 .
ZJ w1 v.ii I~ I1

co 0 >. w. w0 40 01 W
-) EU J = 1 1 0 0 1 - fa0.

Z U. ZO zhOI1 0

96 96 .- -1.E.-Ea*--



I ..

Go

10

- a

Aw

o

n

Ng

I. -



cc7
d0

CL

r. 0

0.

C640
If&

hiA2E



IcI

-4

-C4

IMI

44 U3 (

44

jai QIE0041
U-4 c 2

X7 ( 'ANN



The contents of file POSTFIX SIMULA is the following text.]

Sysin.Close:

EDSysout.C lose:

vpirest

EN


